Worshhop on Verification of Autonomous Systems
Techniques for Practical Verification

Jana Tumova
Research interests

• Past
 • Parallel and distributed probabilistic model checking
 • Quantitative model checking of systems with degradation
 • Temporal logic analysis and control of piecewise affine systems

• Ongoing
 • Model checking-based robot motion and action planning
 • Model checking-based multi-agent control
Model checking-based planning

System

\[\dot{x} = f(x, u) \quad x(0) = x_{\text{init}} \]

Abstraction

Model

\[\mathcal{T} = (Q, Q_0, \text{Act}, \rightarrow) \]

Behavior specification

Temporal logic formula

Which of the model executions satisfy the formula?

Projection

Here is one

\[Q^* \rightarrow \text{Act} \]

There is none
Model checking-based robot mission and motion planning

System
\[
\dot{p}(t) = u(t) \quad p(t) \in P \subseteq \mathbb{R}^2 \quad u(t) \in U \subseteq \mathbb{R}^2 \\
p(0) = P_1
\]

Behavior specification
Periodically visit \(P_1, P_4, P_8 \) and never enter \(P_{10} \)

Model checking-based robot mission and motion planning

System
\[\dot{p}(t) = u(t) \quad p(t) \in P \subseteq \mathbb{R}^2 \quad u(t) \in U \subseteq \mathbb{R}^2 \]
\[p(0) = P_1 \]

Behavior specification
Periodically visit \(P_1, P_4, P_8 \) and never enter \(P_{10} \)

Linear Temporal Logic (LTL) formula
\[\Diamond \varphi P_1 \land \Diamond \varphi P_4 \land \Diamond \varphi P_8 \land \Box \neg P_{10} \]

Model checking-based robot mission and motion planning

System

\[
\dot{p}(t) = u(t) \quad p(t) \in P \subseteq \mathbb{R}^2 \quad u(t) \in U \subseteq \mathbb{R}^2
\]

\[p(0) = P_1\]

Behavior specification

Periodically visit \(P_1, P_4, P_8\) and never enter \(P_{10}\)

Linear Temporal Logic (LTL) formula

\[\mathcal{GF} P_1 \land \mathcal{GF} P_4 \land \mathcal{GF} P_8 \land \mathcal{G} \neg P_{10}\]

Research challenges

- Input user-friendliness
 - structured English, graphical representation
- Computational complexity and scalability
 - receding horizon, fragments of logics
- Dynamic environments and imprecisions of sensors and actuators
 - nondeterministic, probabilistic, partial observable models
 - reactive re-planning
- Multi-agent systems
 - task decomposition, decentralized planning
- Optimality
 - weighted models
- Specification infeasibility
 - least-violating planning, model repair, analysis of reasons
1 Highlight: Least violating sampling-based motion planning algorithm

Least-violating Control Strategy Synthesis with Safety Rules in HSCC 2013, with Gavin Hall, Sertac Karaman, Emilio Frazzoli, Daniela Rus
Incremental Sampling-based Algorithm for Minimum-violation Motion Planning in CDC 2013, with Luis Reyes-Castro, Pratik Chaudhari, Sertac Karaman, Emilio Frazzoli, Daniela Rus