INTO–CPS
Practical Verification for Cyber–Physical Systems

Jim Woodcock
University of York
INTO–CPS

• Three–year Horizon 2020 project
• Integrated toolchain for cyber–physical systems
• Heterogeneous components
 • concurrent, discrete, continuous, stochastic,…
• Verification
 • co–simulation with diverse tools
 • verification, model checking with diverse semantics
• Three most important ideas in the project:
 • automation
 • automation
 • automation
Heterogeneous Semantics

- Single meta-language for heterogeneous semantics
 - Unifying Theories of Programming
 - discrete and hybrid relational calculi
- Implementation in Isabelle/HOL theorem prover
- Support for verification activities
 - test-case/scenario generation, test/simulation oracles
 - structural verification:
 - model consistency, deadlock, livelock, determinism
 - property verification: theorem provers/model checkers
 - refinement checking
 - design space exploration
 - engineering emergent properties
Collaborative (Co-) Modelling

- Design parameters: fixed per run
- Variables: modified during run

- Ideal, realistic, faulty behaviours
- Fault modelling: including error states & faulty functionality
- Fault activation: during simulation managed by the script

- Co-model Interface
- DE Model
- Contract
- CT Model

- Shared design parameters, variables, events

- Initialise variables
- Set design parameters
- Swap components
- Simulate user input
- Inject faults
Co-model Outputs