Worskhop on Verification of Autonomous Systems

Techniques for Practical Verification

Jana Tumova

Research interests

- Past
 - Parallel and distributed probabilistic model checking
 - Quantitative model checking of systems with degradation
 - Temporal logic analysis and control of piecewise affine systems
- Ongoing
 - Model checking-based robot motion and action planning
 - Model checking-based multi-agent control

Model checking-based planning

Model checking-based robot mission and motion planning

System

 $\dot{p}(t) = u(t) \qquad p(t) \in P \subseteq \mathbb{R}^2 \qquad u(t) \in U \subseteq \mathbb{R}^2$ $p(0) = P_1$

Behavior specification Periodically visit P_1, P_4, P_8 and never enter P_{10}

[KFP09] Kress-Gazit, Fainekos, Pappas, "Temporal-Logic-Based Reactive Mission and Motion Planning," TRO, 2009.

Model checking-based robot mission and motion planning

System

 $\dot{p}(t) = u(t) \qquad p(t) \in P \subseteq \mathbb{R}^2 \qquad u(t) \in U \subseteq \mathbb{R}^2$ $p(0) = P_1$

Behavior specification Periodically visit P_1, P_4, P_8 and never enter P_{10}

Linear Temporal Logic (LTL) formula $\mathcal{GFP}_1 \wedge \mathcal{GFP}_4 \wedge \mathcal{GFP}_8 \wedge \mathcal{G} \neg P_{10}$

[KFP09] Kress-Gazit, Fainekos, Pappas, "Temporal-Logic-Based Reactive Mission and Motion Planning," TRO, 2009.

Model checking-based robot mission and motion planning

System

 $\mathcal{GF} P_1 \land$

Behavior specification Periodically visit P_1, P_4, P_8 and never enter P_{10}

Linear Temporal Logic (LTL) formula $\mathcal{GFP}_1 \wedge \mathcal{GFP}_4 \wedge \mathcal{GFP}_8 \wedge \mathcal{G} \neg P_{10}$

[KFP09] Kress-Gazit, Fainekos, Pappas, "Temporal-Logic-Based Reactive Mission and Motion Planning," TRO, 2009.

Research challenges

- Input user-friendliness
 - structured English, graphical representation
- Computational complexity and scalability
 - receding horizon, fragments of logics
- Dynamic environments and imprecisions of sensors and actuators
 - nondeterministic, probabilistic, partial observable models
 - reactive re-planning
- Multi-agent systems
 - task decomposition, decentralized planning
- Optimality
 - weighted models
- Specification infeasibility
 - least-violating planning, model repair, analysis of reasons

1 Highlight: Least violating sampling-based motion planning algorithm

Least-violating Control Strategy Synthesis with Safety Rules in HSCC 2013, with Gavin Hall, Sertac Karaman, Emilio Frazzoli, Daniela Rus Incremental Sampling-based Algorithm for Minimum-violation Motion Planning in CDC 2013, with Luis Reyes-Castro, Pratik Chaudhari, Sertac Karaman, Emilio Frazzoli, Daniela Rus