

INTO-CPS Practical Verification for Cyber-Physical Systems

Jim Woodcock University of York

INTO-CPS

- Three-year Horizon 2020 project
- Integrated toolchain for cyber-physical systems
- Heterogeneous components
 - concurrent, discrete, continuous, stochastic,...
- Verification
 - co-simulation with diverse tools
 - verification, model checking with diverse semantics
- Three most important ideas in the project:
 - automation
 - automation
 - automation

Heterogeneous Semantics

- Single meta-language for heterogeneous semantics
 - Unifying Theories of Programming
 - discrete and hybrid relational calculi
- Implementation in Isabelle/HOL theorem prover
- Support for verification activities
 - test-case/scenario generation, test/simulation oracles
 - structural verification:
 - model consistency, deadlock, livelock, determinism
 - property verification: theorem provers/model checkers
 - refinement checking
 - design space exploration
 - engineering emergent properties

http://intocps.au.dk/

Collaborative (Co-) Modelling

INtegrated TOolchain for Cyber–Physical Systems

http://intocps.au.dk/

Co-model Outputs

