
Challenges

• Requirements: specification in advance → into languages to be able to verify

• Arbitrary design methodologies and architectures → tools for subsets of systems

• Tools for all kinds of systems (not necessarily the same tool) → to compare against each

other

• Simulations and models for evaluation → efficient and cost-effective

◦ How do we model and consider environments with people, the real world, space, houses,

animals?

◦ Modelling what systems that learn/adapt online are going to do

• Extracting a model of decision making of the system (high-level) → to determine if the

robot intending to do harm or not

• Cases and simulations against which the systems should be verified

• Systems that self-determine and self-assess for self-management → for subsystem

verification and visibility of behaviours and faults

• Integration → how do we put together verification for control systems, decision making,

hardware and software together, since autonomous systems have all of these elements
together?

• Systems with emergent behaviours

Discussion

How does the self-assessment fit into traditional verification? (how will verification allow learning)
A function manager administrates functionality and learning at runtime. The function manager
would do the verification when the system learns. Also, at a high level, one should verify the
manager.

How do you ensure that the function manager is less complex than that which you are verifying?
Agent sits on top, decisions of these agents are verified.

What about a simple system? You add an agent on top. System should expose and understand what
it’s doing → self-determination.

Regulators care about system as a black box → defined and verified system behavior. Reasoning
about components.

How can you maintain and black box the verification in complex systems and environments? This
does not work for adaptive systems, otherwise you would need to test for a variety of scenarios.

Verifiability of systems needs to be evaluated. Most systems are not verifiable at all; try to build
verifiable systems but there are interesting systems that are not verifiable. There are some domains
that we may see more clearly, others less so.

Deep learning is impacting verification; white box verification is problematic. What are the research
opportunities? How can we verify and validate systems and build trust in systems that cannot be
verified by traditional methods (formal, testing). Deep learning not just perceptual, but also into
control and decision making.

How do we guarantee learning systems learn good things? Life-long verification? Unlearning
something may be as complex as learning. Self-assessment should also reason about what it’s
learning, what it should be learning and what it should not. Deep learning needs to be managed.

How do you build a system capable of understanding what it is learning? Functions as agents and
reasoning about functions.

Verification of something like alpha-Go (that learns) might be limited to having oracle knowledge
of what is good.

Can we verify very intelligent and complex systems? Defining what a system like that does is a
problem. Let system learn, but in a contained environment. Represent safety limits as part of
constraint set.

Doesn’t having agent based function management doesn’t just move the verification problem to the
agent? If reasoning is more explicit, via the agent, it might be easier to verify, as the function
management.

We might not be able to provide 100% guarantees for all the environments, for all the cases, we
might have to limit the verification.

Would you agree that figuring out how to generalize a systems performance from an example or set
of examples be a research challenge?

Formal models from scenarios → extendible, abstractions can be made, they help verification. Big
research challenge in this area is finding the right abstractions for verification, which enable formal
verification for highly complex systems. How can we better leverage existing methods to address
verification problems in autonomy (to model and verify systems that learn)? Even for simple, non-
learning systems, we cannot find abstractions for techniques like slicing.

Runtime adaptive systems → how to reason about them and make models? Performance is different
according to the circumstances. There are runtime monitors. Function managers can help to
constraint what the system does.

How do we set the boundary? How do we define what the system should and should not do? We are
horrible in robotics at realizing what matters (e.g. florescent lighting.)

Instead of coming from a formal methods perspective, human-like learning verification. E.g.
schooling, exams for the system that inspect system’s understand of subject matter (from a formal
model), certification for driving, etc.

What about cognitively complex systems? Even sometimes evaluating a student’s responses on an
exam may be difficult to handle quantitatively.

Rational agent is verified in a provable way, abstracts perception. Requires fully specifying
responses to all possible decisions. The recognition, classification, sensor input, control systems are

not considered, only the inputs they provide to the agents.

A remaining challenge → qualification of sensor systems (video, classification of environment
components). Verifying rational agents involves assumptions on these other peripheral systems.
They need to be verified but it’s hard. People can come up with safety constraints for systems like
AUVs, etc. Iterative approach will yield increasing capable systems by increasing the constraints
and system properties.

Many dependencies go into simple constraints like what is a safe distance (e.g. uncertainties in data,
etc).

Licensing model of verification: weakness is that such tests make assumptions on key aspects like
assuming the driver is not a psychopath… so those aspects aren’t tested traditionally. Problem of
requirements and specifications. Processes are based on assumptions about what humans already
know; robots don’t have them. Fundamental problem is intractable.

Baseline could be system makes decisions based on human decisions, but humans make mistakes
all the time – how does verification work in this way? Rational specification of high-level
properties of ethical/abstract choices to avoid prescribing all possible instances.

One of the gaps left to discuss – how do we define of when to stop enumerating cases? (e.g. child
vs. dog, crawling child vs. dog, etc…)

