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Evaluation of the Robot Control System }
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Testing vs Verification

 Testing: sample based evaluation

e Modular testing

. System testing [ Time consuming J

 Human study
e Verification: mathematical proofs
» System/Modular verification through Lyapunov analysis

e Neural network verification
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Neural Network Verification Tools

Function Specification
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How to come up with good specifications
for robotics problems?
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Case 1: Object Pose Estimation

 Existing approach: robustness against Lp disturbances on sampled images
» More practical specifications:

* Whether the pose estimation error 1s bounded under 1) camera movement; 2)
lighting changes, etc.

Function to
be verified
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Case 2: Human Prediction Model

Real time measurement

_ Prediction Model o
Human data Model Learning . . > Prediction
(Intention/Trajectory) y

* Should the model be Lp robust to every human trajectory?
(Returning the same intention prediction given small
perturbations on the human trajectory)
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Case 2: Human Prediction Model

Intention label: Intention label:

Reaching

Assembling

aining Data

True Adversary False Adversary
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Case 2: Human Prediction Model

Ay

Iterative
Adversarial .

([ Dataset Augment data with pseudo-labels (z’, o) f Expert Guidance\

: — Supervised Adversarial. Data :
Network Training Training  Training :Augmentation
min Z L(fo(z),v) Scheduler ! :
Adversarial 0 (2,4)€ DoUDads (Whether to EpOChSZ 500 81.99% 82.53% | 82.53% :
Pata i , 7270 ask for human Epochs: 1k  85.92% 81.99%  85.48%
. A = verification of : :
] > the label) Epochs: 2k 85.26% 84.06% . 88.75% :
T et f ' | Epochs: 3k 82.97% 82.31% ' 89.52%
P Epochs: 4k 82.86% 68.56% @ 90.83%
I'taining Data (mes ) & Do, P that ot | o’ Human Epochs: 5k 81.55% 58.52% ' 92.03%
T oarg min L' (fa(x), 40) ’ \lfe,r-lﬁi?“f;“t 0o T ‘
s.t. | To — T’”"C <eAN fg(m') £y Az €X. abeling the data
u ~ , : ,/ , The learned model does not try to “robustify” every
Augment data with verified labels (2", y') \\ J data point, but tries to fit the decision boundary well.
g %

Carnegie Mellon University . . . _ _ . o . _ INTELLIGENT
N R. Liu, and C. Liu, “IADA: Iterative Adversarial Data Augmentation Using Formal Verification and Expert Guidance,” ICML Workshop on Human in CONTROL LAB

The Robotics Institute the loop learning, 2021. ]




Case 3: Robot Policy

 For human-robot collision avoidance

CR(CUR)
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Real World Situation

Computation model in Cartesian space

d(Cr(zR),Cu(zH)) =~
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The requirements on
different states are
different

LR
The robot can only directly
affect its own state.
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Remarks

 What to verify highly depends on the system-under-test

» There exist gaps between the problems that verification algorithms can solve and
the problems that need to be verified.

« Example: (local) robustness to sampled panda images versus (global)
robustness to all panda images

» Looking into real applications will offer more insights on what verification tools
need to be developed
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