Verification of Deep Neural Networks in Control Systems

Changliu Liu

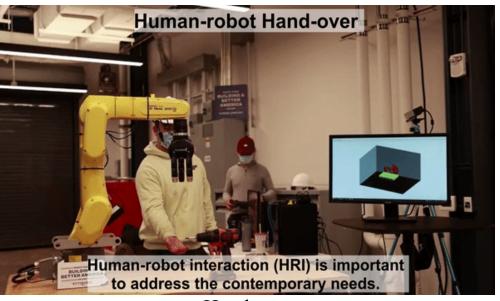
Assistant Professor

Robotics Institute

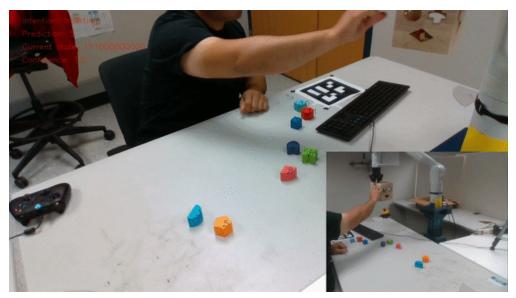
Carnegie Mellon University

Collaborative Handling

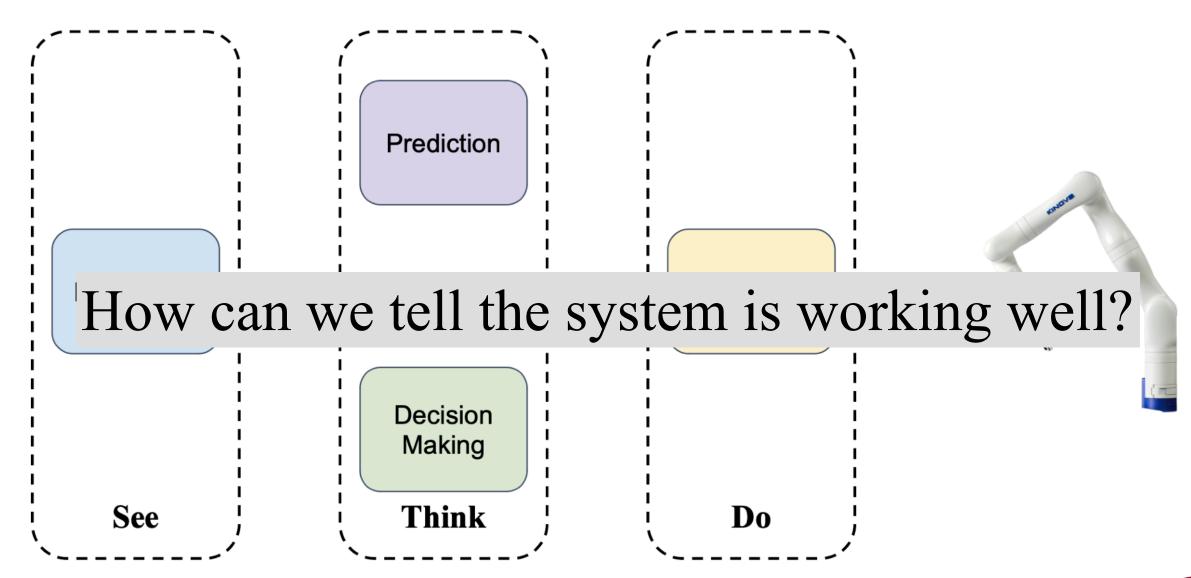
Learning from Demonstration

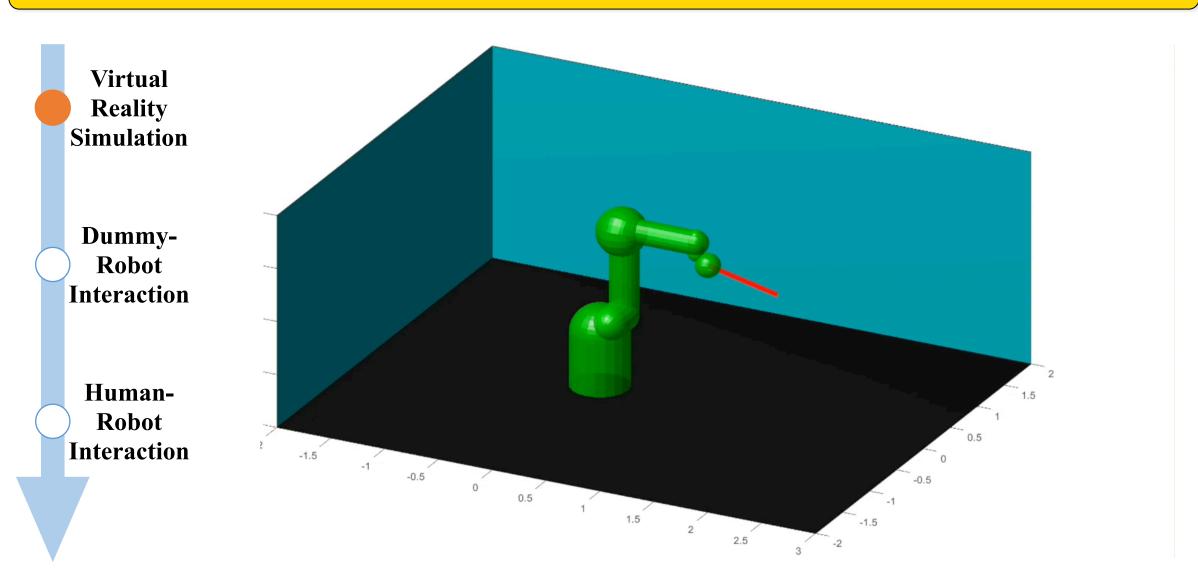


Handover



Co-assembly

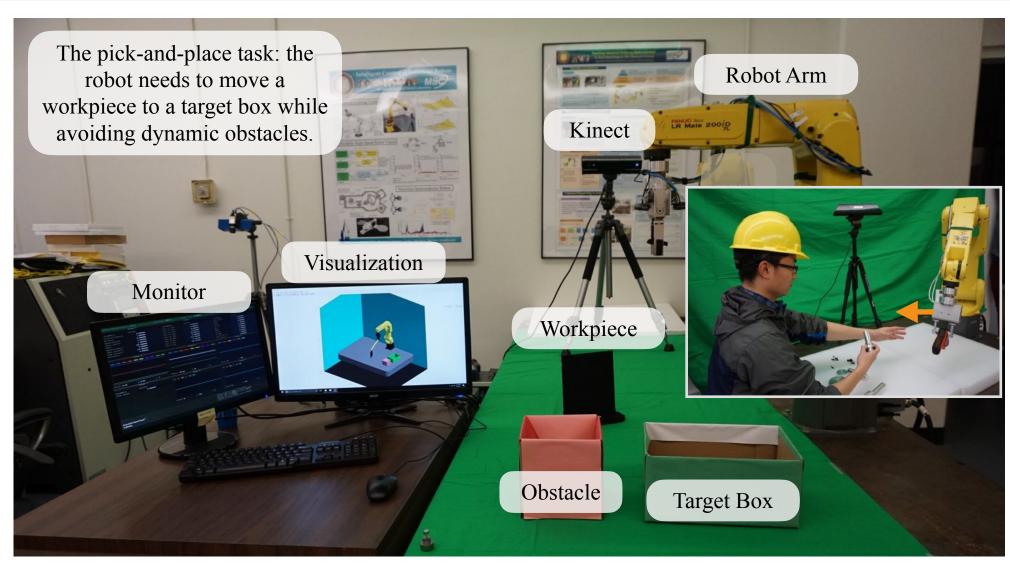




Virtual
Reality
Simulation

Dummy-Robot Interaction

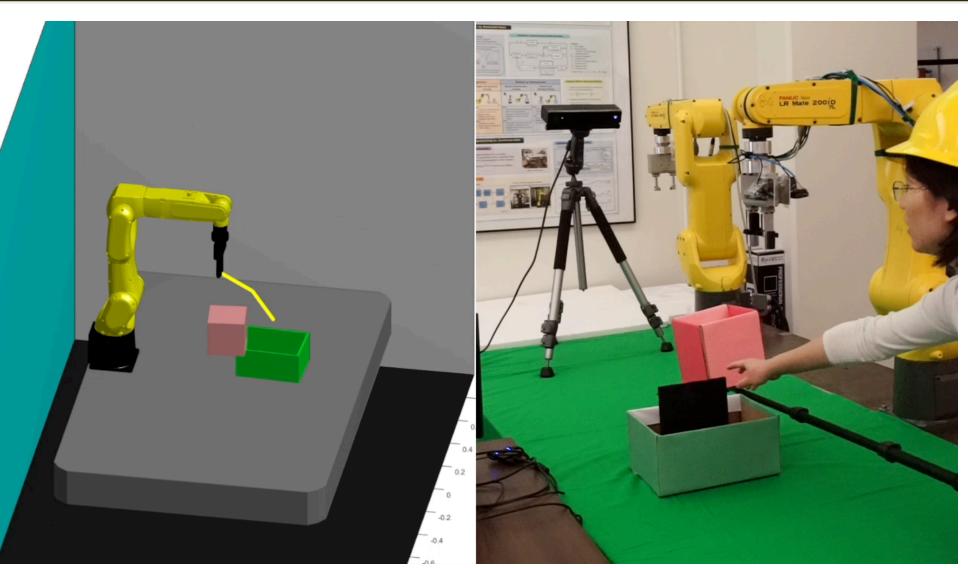
Human-Robot Interaction



Virtual Reality Simulation

Dummy-Robot Interaction

Human-Robot Interaction



Virtual
Reality
Simulation

Dummy-Robot Interaction

Human-Robot Interaction



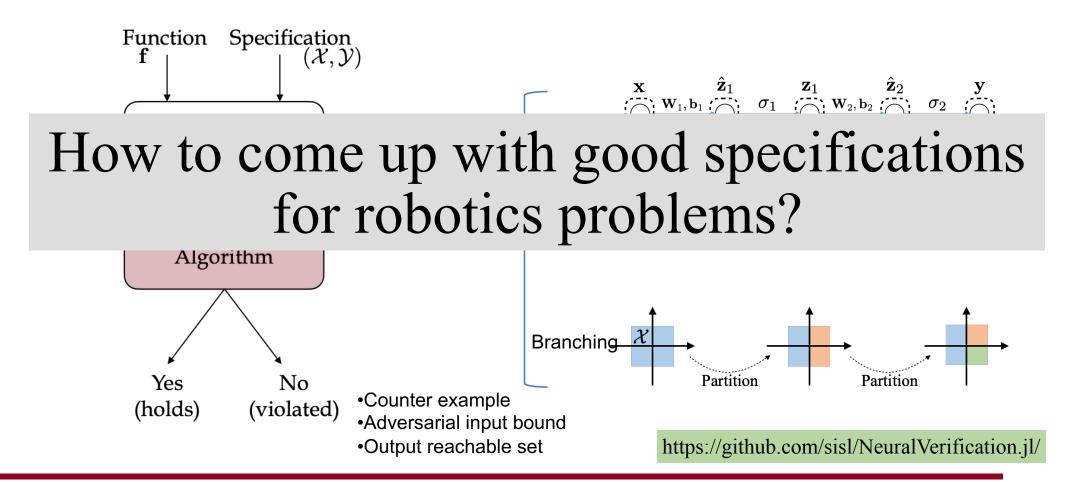
Testing vs Verification

- Testing: sample based evaluation
 - Modular testing
 - System testing

Time consuming

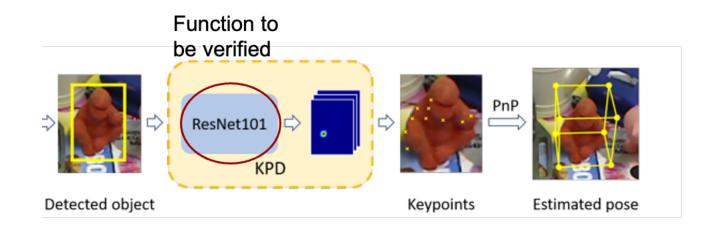
- Human study
- Verification: mathematical proofs
 - System/Modular verification through Lyapunov analysis
 - Neural network verification

Neural Network Verification Tools

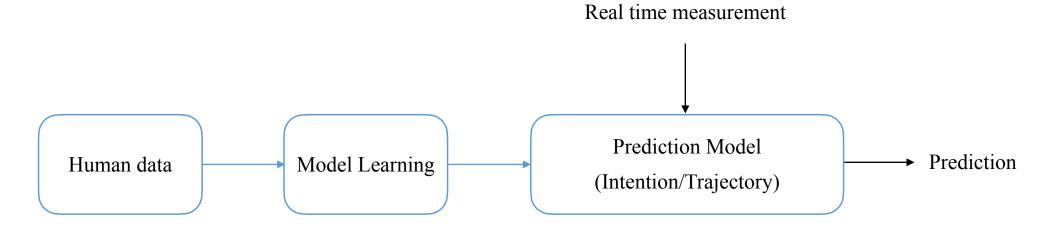


Case 1: Object Pose Estimation

- Existing approach: robustness against Lp disturbances on sampled images
- More practical specifications:
 - Whether the pose estimation error is bounded under 1) camera movement; 2) lighting changes, etc.



Case 2: Human Prediction Model



• Should the model be Lp robust to every human trajectory? (Returning the same intention prediction given small perturbations on the human trajectory)

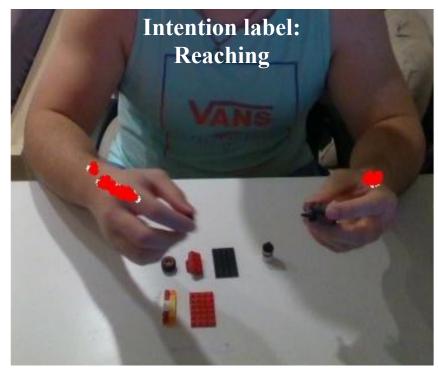
Reaching

Reaching 5

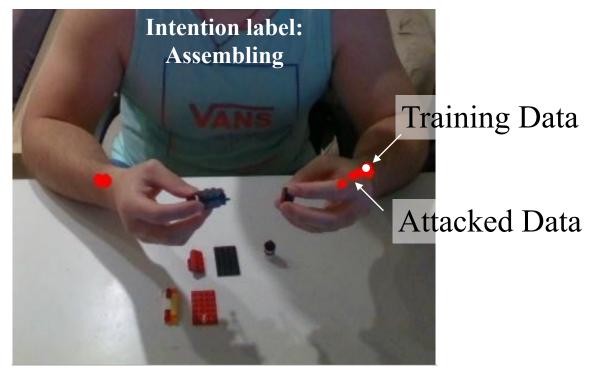
Carnegie Mellon University

The Robotics Institute

Case 2: Human Prediction Model

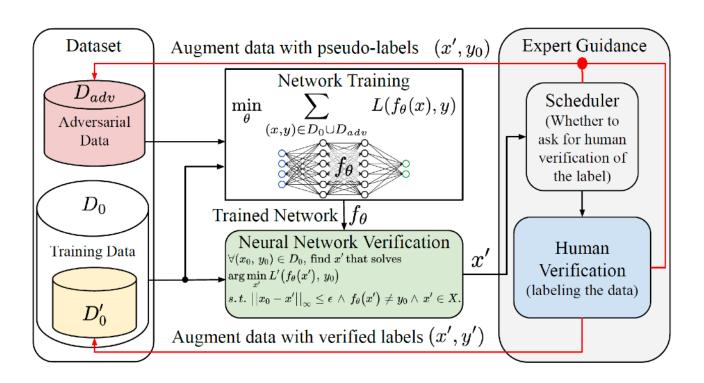


True Adversary



False Adversary

Case 2: Human Prediction Model



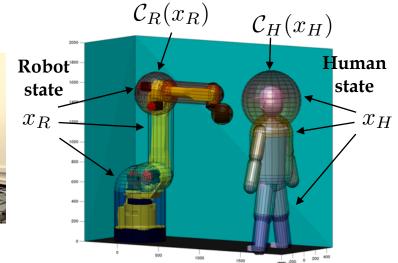
			Iterative
			Adversarial
	Supervised	Adversarial	Data
	Training	Training	Augmentation
Epochs: 500	81.99%	82.53%	82.53%
Epochs: 1k	85.92%	81.99%	85.48%
Epochs: 2k	85.26%	84.06%	88.75%
Epochs: 3k	82.97%	82.31%	89.52%
Epochs: 4k	82.86%	68.56%	90.83%
Epochs: 5k	81.55%	58.52%	92.03%
			` -'

The learned model does not try to "robustify" every data point, but tries to fit the decision boundary well.

Case 3: Robot Policy

• For human-robot collision avoidance

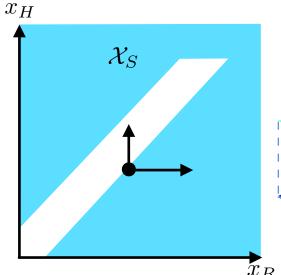
Real World Situation



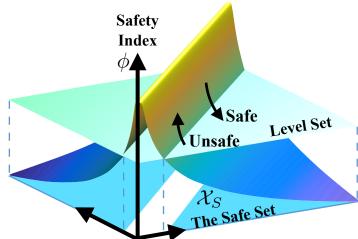
Computation model in Cartesian space

$$d(\mathcal{C}_R(x_R), \mathcal{C}_H(x_H)) \ge \gamma$$

The requirements on different states are different



The robot can only directly affect its own state.



Remarks

- What to verify highly depends on the system-under-test
- There exist gaps between the problems that verification algorithms can solve and the problems that need to be verified.
 - Example: (local) robustness to sampled panda images versus (global) robustness to all panda images
- Looking into real applications will offer more insights on what verification tools need to be developed

Thank You!

Students

